60 research outputs found

    Turbulent Velocity Structure in Molecular Clouds

    Full text link
    We compare velocity structure in the Polaris Flare molecular cloud at scales ranging from 0.015 pc to 20 pc to simulations of supersonic hydrodynamic and MHD turbulence computed with the ZEUS MHD code. We use several different statistical methods to compare models and observations. The Delta-variance wavelet transform is most sensitive to characteristic scales and scaling laws, but is limited by a lack of intensity weighting. The scanning-beam size-linewidth relation is more robust with respect to noisy data. Obtaining the global velocity scaling behaviour requires that large-scale trends in the maps not be removed but treated as part of the turbulent cascade. We compare the true velocity PDF in our models to velocity centroids and average line profiles in optically thin lines, and find that the line profiles reflect the true PDF better unless the map size is comparable to the total line-of-sight thickness of the cloud. Comparison of line profiles to velocity centroid PDFs can thus be used to measure the line-of-sight depth of a cloud. The observed density and velocity structure is consistent with supersonic turbulence with a driving scale at or above the size of the molecular cloud and dissipative processes below 0.05 pc. Ambipolar diffusion could explain the dissipation. The velocity PDFs exclude small-scale driving such as that from stellar outflows as a dominant process in the observed region. In the models, large-scale driving is the only process that produces deviations from a Gaussian PDF shape consistent with observations. Strong magnetic fields impose a clear anisotropy on the velocity field, reducing the velocity variance in directions perpendicular to the field. (abridged)Comment: 21 pages, 24 figures, accepted by A&A, with some modifications, including change of claimed direct detection of dissipation scale to an upper limi

    Spatially extended OH+ emission from the Orion Bar and Ridge

    Get PDF
    We report the first detection of a Galactic source of OH+ line emission: the Orion Bar, a bright nearby photon-dominated region. Line emission is detected over ~1' (0.12 pc), tracing the Bar itself as well as the Southern tip of the Orion Ridge. The line width of ~4 km/s suggests an origin of the OH+ emission close to the PDR surface, at a depth of A_V ~0.3-0.5 into the cloud where most hydrogen is in atomic form. Steady-state collisional and radiative excitation models require unrealistically high OH+ column densities to match the observed line intensity, indicating that the formation of OH+ in the Bar is rapid enough to influence its excitation. Our best-fit OH+ column density of ~1x10^14 cm^-2 is similar to that in previous absorption line studies, while our limits on the ratios of OH+/H2O+ (>~40) and OH+/H3O+ (>~15) are higher than seen before. The column density of OH+ is consistent with estimates from a thermo-chemical model for parameters applicable to the Orion Bar, given the current uncertainties in the local gas pressure and the spectral shape of the ionizing radiation field. The unusually high OH+/H2O+ and OH+/H3O+ ratios are probably due to the high UV radiation field and electron density in this object. In the Bar, photodissociation and electron recombination are more effective destroyers of OH+ than the reaction with H2, which limits the production of H2O+. The appearance of the OH+ lines in emission is the result of the high density of electrons and H atoms in the Orion Bar, since for these species, inelastic collisions with OH+ are faster than reactive ones. In addition, chemical pumping, far-infrared pumping by local dust, and near-UV pumping by Trapezium starlight contribute to the OH+ excitation. Similar conditions may apply to extragalactic nuclei where OH+ lines are seen in emission.Comment: Accepted by A&A; 10 pages, 5 figure

    The fine structure line deficit in S 140

    Get PDF
    We try to understand the gas heating and cooling in the S 140 star forming region by spatially and spectrally resolving the distribution of the main cooling lines with GREAT/SOFIA. We mapped the fine structure lines of [OI] (63 {\mu}m) and [CII] (158 {\mu}m) and the rotational transitions of CO 13-12 and 16-15 with GREAT/SOFIA and analyzed the spatial and velocity structure to assign the emission to individual heating sources. We measure the optical depth of the [CII] line and perform radiative transfer computations for all observed transitions. By comparing the line intensities with the far-infrared continuum we can assess the total cooling budget and measure the gas heating efficiency. The main emission of fine structure lines in S 140 stems from a 8.3'' region close to the infrared source IRS 2 that is not prominent at any other wavelength. It can be explained by a photon-dominated region (PDR) structure around the embedded cluster if we assume that the [OI] line intensity is reduced by a factor seven due to self-absorption. The external cloud interface forms a second PDR at an inclination of 80-85 degrees illuminated by an UV field of 60 times the standard interstellar radiation field. The main radiation source in the cloud, IRS 1, is not prominent at all in the fine structure lines. We measure line-to-continuum cooling ratios below 10^(-4), i.e. values lower than in any other Galactic source, rather matching the far-IR line deficit seen in ULIRGs. In particular the low intensity of the [CII] line can only be modeled by an extreme excitation gradient in the gas around IRS 1. We found no explanation why IRS 1 shows no associated fine-structure line peak, while IRS 2 does. The inner part of S 140 mimics the far-IR line deficit in ULIRGs thereby providing a template that may lead to a future model.Comment: Accepted for publication in Astronomy & Astrophysic

    An overview of the planned CCAT software system

    Get PDF
    CCAT will be a 25m diameter sub-millimeter telescope capable of operating in the 0.2 to 2.1mm wavelength range. It will be located at an altitude of 5600m on Cerro Chajnantor in northern Chile near the ALMA site. The anticipated first generation instruments include large format (60,000 pixel) kinetic inductance detector (KID) cameras, a large format heterodyne array and a direct detection multi-object spectrometer. The paper describes the architecture of the CCAT software and the development strategy.Comment: 17 pages, 6 figures, to appear in Software and Cyberinfrastructure for Astronomy III, Chiozzi & Radziwill (eds), Proc. SPIE 9152, paper ID 9152-10

    CMR exploration II -- filament identification with machine learning

    Full text link
    We adopt magnetohydrodynamics (MHD) simulations that model the formation of filamentary molecular clouds via the collision-induced magnetic reconnection (CMR) mechanism under varying physical conditions. We conduct radiative transfer using RADMC-3D to generate synthetic dust emission of CMR filaments. We use the previously developed machine learning technique CASI-2D along with the diffusion model to identify the location of CMR filaments in dust emission. Both models showed a high level of accuracy in identifying CMR filaments in the test dataset, with detection rates of over 80% and 70%, respectively, at a false detection rate of 5%. We then apply the models to real Herschel dust observations of different molecular clouds, successfully identifying several high-confidence CMR filament candidates. Notably, the models are able to detect high-confidence CMR filament candidates in Orion A from dust emission, which have previously been identified using molecular line emission.Comment: ApJ accepte

    CMR exploration I -- filament structure with synthetic observations

    Full text link
    In this paper, we carry out a pilot parameter exploration for the collision-induced magnetic reconnection (CMR) mechanism that forms filamentary molecular clouds. Following Kong et al. (2021), we utilize Athena++ to model CMR in the context of resistive magnetohydrodynamics (MHD), considering the effect from seven physical conditions, including the Ohmic resistivity (η\eta), the magnetic field (BB), the cloud density (ρ\rho), the cloud radius RR, the isothermal temperature TT, the collision velocity vxv_x, and the shear velocity vzv_z. Compared to their fiducial model, we consider a higher and a lower value for each one of the seven parameters. We quantify the exploration results with five metrics, including the density probability distribution function (ρ\rho-PDF), the filament morphology (250 μ\mum dust emission), the BB-ρ\rho relation, the dominant fiber width, and the ringiness that describes the significance of the ring-like sub-structures. The exploration forms straight and curved CMR-filaments with rich sub-structures that are highly variable in space and time. The variation translates to fluctuation in all the five metrics, reflecting the chaotic nature of magnetic reconnection in CMR. A temporary BρB\propto\rho relation is noticeable during the first 0.6 Myr. Overall, the exploration provides useful initial insights to the CMR mechanism.Comment: 31 pages, 20 figures, 1 tabl

    The water abundance behind interstellar shocks: results from HerschelHerschel/PACS and SpitzerSpitzer/IRS observations of H2_2O, CO, and H2_2

    Full text link
    We have investigated the water abundance in shock-heated molecular gas, making use of HerschelHerschel measurements of far-infrared CO and H2_2O line emissions in combination with SpitzerSpitzer measurements of mid-IR H2_2 rotational emissions. We present far-infrared line spectra obtained with HerschelHerschel's PACS instrument in range spectroscopy mode towards two positions in the protostellar outflow NGC 2071 and one position each in the supernova remnants W28 and 3C391. These spectra provide unequivocal detections, at one or more positions, of 12 rotational lines of water, 14 rotational lines of CO, 8 rotational lines of OH (4 lambda doublets), and 7 fine-structure transitions of atoms or atomic ions. We first used a simultaneous fit to the CO line fluxes, along with H2_2 rotational line fluxes measured previously by SpitzerSpitzer, to constrain the temperature and density distribution within the emitting gas; and we then investigated the water abundances implied by the observed H2_2O line fluxes. The water line fluxes are in acceptable agreement with standard theoretical models for nondissociative shocks that predict the complete vaporization of grain mantles in shocks of velocity v25v \sim 25 km/s, behind which the characteristic gas temperature is 1300\sim 1300 K and the H2_2O/CO ratio is 1.2Comment: 42 pages, 15 figures, accepted for publication in the Astrophysical Journa

    Herschel/HIFI Spectral Mapping of C+^+, CH+^+, and CH in Orion BN/KL: The Prevailing Role of Ultraviolet Irradiation in CH+^+ Formation

    Get PDF
    The CH+^+ ion is a key species in the initial steps of interstellar carbon chemistry. Its formation in diverse environments where it is observed is not well understood, however, because the main production pathway is so endothermic (4280 K) that it is unlikely to proceed at the typical temperatures of molecular clouds. We investigation CH+^+ formation with the first velocity-resolved spectral mapping of the CH+^+ J=10,21J=1-0, 2-1 rotational transitions, three sets of CH Λ\Lambda-doubled triplet lines, 12^{12}C+^+ and 13^{13}C+^+, and CH3_3OH 835~GHz E-symmetry Q branch transitions, obtained with Herschel/HIFI over \approx12 arcmin2^2 centered on the Orion BN/KL source. We present the spatial morphologies and kinematics, cloud boundary conditions, excitation temperatures, column densities, and 12^{12}C+^+ optical depths. Emission from C+^+, CH+^+, and CH is indicated to arise in the diluted gas, outside of the explosive, dense BN/KL outflow. Our models show that UV-irradiation provides favorable conditions for steady-state production of CH+^+ in this environment. Surprisingly, no spatial or kinematic correspondences of these species are found with H2_2 S(1) emission tracing shocked gas in the outflow. We propose that C+^+ is being consumed by rapid production of CO to explain the lack of C+^+ and CH+^+ in the outflow, and that fluorescence provides the reservoir of H2_2 excited to higher ro-vibrational and rotational levels. Hence, in star-forming environments containing sources of shocks and strong UV radiation, a description of CH+^+ formation and excitation conditions is incomplete without including the important --- possibly dominant --- role of UV irradiation.Comment: Accepted for publication in The Astrophysical Journa
    corecore